The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm \#1

Date: September 26, 2023
Course: EE 313 Evans

Name: \qquad
Last,
First

- This in-person exam is scheduled to last 75 minutes.
- Open books, open notes, and open class materials, including homework assignments and solution sets and previous midterm exams and solutions.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network.
- Please disable all wireless connections on your calculator(s) and computer system(s).
- Please mute all computer systems.
- Please turn off all phones.
- No headphones are allowed.
- All work should be performed on the midterm exam. If more space is needed, then use the backs of the pages.
- Fully justify your answers. If you decide to quote text from a source, please give the quote, page number and source citation.

Problem	Point Value	Your score	Topic
1	25		Sampling Sinusoids
2	25		Fourier Series
3	26		Sampling
4	24		Spectrograms
Total	100		

Problem 1.1 Sampling Sinusoids. 25 points.
Consider the sinusoidal signal $x(t)=\cos \left(2 \pi f_{0} t\right)$ for continuous-time frequency f_{0} in Hz .
We are able to observe $x(t)$ for all time, i.e. for $-\infty<t<\infty$.
We sample $x(t)$ at a sampling rate of f_{s} in Hz to produce a discrete-time signal $x[n]$.
(a) Derive the formula for $x[n]$ by sampling $x(t)$ at a sampling rate of f_{s} in Hz .6 points.
(b) Based on your answer in part (a), give a formula for the discrete-time frequency $\widehat{\omega}_{0}$ of $x[n]$ in terms of the continuous-time frequency f_{0} and sampling rate f_{s}. Units of $\widehat{\omega}_{0}$ are in rad/sample. 6 points.
(c) We choose the sampling rate f_{s} to satisfy the Sampling Theorem, i.e. $f_{s}>2 f_{0}$.
i. Give the range of continuous-time frequencies in Hz that can be correctly captured by sampling. Be sure to include negative, positive and zero frequencies. Justify your reasoning. 6 points.
ii. Give the range of discrete-time frequencies that are represented when the Sampling Theorem is satisfied, i.e. $f_{s}>2 f_{0}$. Be sure to include negative, positive and zero frequencies. Justify your reasoning. 7 points

Problem 1.2 Fourier Series. 25 points.
Compute the Fourier series for a periodic pulse wave

$$
x(t)=\left[\begin{array}{cc}
1 & \text { for } 0 \leq|t|<\tau / 2 \\
0 & \text { for } \tau / 2 \leq|t|<T_{0} / 2
\end{array}\right.
$$

The fraction of the time the pulse is "on" (i.e. has value 1) in each fundamental period T_{0} is τ / T_{0}.

(a) Compute Fourier series coefficients a_{k} of $x(t)$ to represent $\quad x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k f_{0} t}$
i. Compute $a_{0} .6$ points. $\quad a_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) d t$
ii. Compute a_{k} for $k \neq 0$. 12 points. $\quad a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k f_{0} t} d t$
(b) Compute Fourier series coefficients b_{k} of $y(t)=2 x(t)-2 \tau / T_{0}$ to represent $y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j 2 \pi k f_{0} t}$
i. Compute $b_{0} .3$ points. $b_{0}=\frac{1}{T_{0}} \int_{0}^{T_{0}} y(t) d t$
ii. Compute b_{k} for $k \neq 0.4$ points. $\quad b_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} y(t) e^{-j 2 \pi k f_{0} t} d t$

Problem 1.3. Sampling. 26 points.
(a) Let $x(t)=\cos \left(2 \pi f_{0} t\right)$ be a continuous-time signal for $-\infty<t<\infty$.
i. From the block diagram below, derive a formula for $y(t)$ and write it as a sum of cosines. 6 points.

ii. Let $f_{0}=3000 \mathrm{~Hz}$. What negative, zero, and positive frequencies are present in $y(t)$? 6 points
(b) Let $x(t)=\cos \left(2 \pi f_{0} t\right)$ be a continuous-time signal for $-\infty<t<\infty$.
i. From the block diagram below, derive a formula for $y[n]$ and write it as a sum of cosines. 6 points

ii. Let $f_{0}=3000 \mathrm{~Hz}$ and $f_{s}=8000 \mathrm{~Hz}$. What negative, zero and positive discrete-time frequencies are present in $y[n]$ between $-\pi \mathrm{rad} / \mathrm{sample}$ and $\pi \mathrm{rad} / \mathrm{sample}$? What are their corresponding continuous-time frequencies? 8 points.

Problem 1.4. Spectrograms. 24 points.
Below are spectrograms (labeled with numbers 1-6) for six signals over the time interval $0 \leq t \leq 2$ s .
The vertical frequency axis for each spectrogram shows non-negative frequencies in units of Hz .
For each signal (a)-(f), identify the corresponding spectrogram and explain your reasoning.

(a) $x(t)=\cos \left(-250 \pi t^{2}\right)$
(b) $x(t)=\cos (100 \pi t-\pi / 4)+\cos (400 \pi t)$
(c) $x(t)=\cos \left(1000 \pi t-250 \pi t^{2}\right)$
(d) $x(t)=\cos (100 \pi t) \cos (400 \pi t)$
(e) $x(t)=\cos \left(30 e^{2 t}\right)$
(f) $x(t)=\cos \left(200 \pi t^{2}\right)$

